Василик П.Г., специалист по продажам ССС
АО "ЕвроХим-1", Москва
Хорошо известно, что цементное вяжущее, обладая высокой прочностью на сжатие, имеет сравнительно низкую прочность на растяжение и на изгиб. Для исправления этого недостатка используется много различных способов, одним из которых является армирование цементного камня различными волокнистыми материалами, как органического, так и неорганического происхождения [1].
С давних пор в строительных материалах применяли асбестовое и древесное волокно. В прошлом веке распространение получили стеклянные, стальные, целлюлозные, полиэтиленовые, полипропиленовые, полиамидные, полиакриловые (ПАН), полиэфирные, углеродные и арамидные (кевларовые) волокна. Все эти типы отличаются не только своими физико-механическими свойствами, стойкостью к воздействию на них агрессивных сред, температур, свето и атмосфероустойчивостью, но и, что немаловажно, ценой и экологической безопасностью.
Цели армирования сухих строительных смесей волокнами (ССС) можно сформулировать следующим образом:
- увеличение прочности при растяжении и изгибе;
- увеличение ударной вязкости;
- компенсация недостатков фракционного состава;
- снижение усадки, которая возникает при затвердевании строительного раствора;
- как следствие, увеличение трещиностойкости (за счет релаксации напряжений в цементном и гипсовом камне, как при процессах кристаллообразования, так и при эксплуатации);
- улучшение тиксотропных свойств и фиксирующей способности (например, в случае плиточного клея противодействие сползанию плитки);
- увеличение морозостойкости;
- увеличение деформационной способности цементного (гипсового) камня;
- облегчение процесса шлифовки (при использовании целлюлозных волокон);
- увеличение износостойкости (при использовании полиакрилового волокна).
Эффективность волокон в композициях возрастает с увеличением их длины. Существует понятие критической длины волокна Lкр, до которой напряжение, воспринимаемое собственно волокном в композиции, возрастает и при L = Lкр становится равным прочности волокна. При разрушении композиции, наполненной волокном с L < Lкр, наблюдается выдёргивание коротких волокон из матрицы, т.е. композиция разрушается на границе волокно / цементный (или гипсовый) камень (рис.1). Волокна с L > Lкр сами разрушаются и полностью реализуют всю прочность. Поэтому композиции, армированные волокном с L > Lкр, намного прочнее, чем волокна с L < Lкр. Чем меньше значение Lкр волокна, тем эффективнее волокно упрочняет матрицу. Теоретически показано, что при L > 10Lкр волокно в композиции воспринимает на себя до 90% внешней нагрузки, на практике же это значение возрастает примерно до 100 Lкр. Увеличение длины волокна приводит к упрочнению композиции, однако одновременно с этим увеличивается вязкость раствора, ухудшается перерабатываемость, технологичность, затрудняется процесс ввода в сухую смесь.
Существует ещё один немаловажный фактор, о котором не следует забывать, когда ведётся речь о полимерном волокне - относительное удлинение волокна при разрыве. Как известно, в определённых условиях стеклообразные полимеры могут выдерживать без разрушения значительные деформации (до 800% у ПЭ). Если величина удлинения при разрыве слишком велика, то мы можем наблюдать разрушение цементного (гипсового) камня без разрушения волокон (рис.2). Это говорит о том, что волокно в такой системе действует максимально эффективно.
Рис. 1
Рис. 2
Для каждого вида волокон и для каждой композиции Lкр индивидуальна. Существуют оценочные формулы, позволяющие определить Lкр, одна из них имеет следующий вид [2]:
Где:
Lкр- критическая длина волокна
- усреднённая прочность волокна
dср- средний диаметр волокна
- адгезионная прочность на границе волокно / матрица
Расчеты показывают, что критическая длина волокна (в зависимости от его природы и природы матрицы) обычно находится в диапазоне от 50 мкм до 1000 мкм, так, например, для стеклянных волокон с dср ~10 мкм в эпоксидных полах Lкр составляет порядка 150 мкм [3].
Как видно из уравнения, наиболее простым решением проблемы эффективности волокна является увеличение адгезионной прочности на границе волокно / матрица . Одним из способов повышения этого показателя для цементных и гипсовых систем является использование редиспергируемых сополимерных порошков Mowilith Pulver®, которые образуют полимерные пленки внутри композиционного материала и увеличивают таким образом адгезию как к внешней основе, так и на границе волокно / матрица. При этом значительно увеличиваются такие показатели строительного материала, как водостойкость, морозостойкость, атмосферостойкость и т.д. [4]. В совокупности с редиспергируемыми порошками полимерные волокна прекрасно себя проявляют и в системах скреплённой теплоизоляции, и в шпатлёвках и штукатурках, и в системах для устройства полов.
Для увеличения эффективности (для снижения Lкр) поверхность некоторых волокон, например, полиакриловых волокон Ricem®, подвергают специальной обработке. В результате такой обработки поверхность становится рифлёной с выемкой вдоль волокна что оптимизирует взаимодействие с вяжущим. Но, несмотря на это, ввиду высокой разрывной прочности полиакрилового волокна (до 1 ГПа) по сравнению с цементным камнем (около 0.0037 ГПа), использование данного вида волокна длиной менее 0,5 мм неэффективно.
Основными проблемами использования волокон являются их заметное влияние на вязкость и технологичность строительного раствора, а также сложности при введении в состав ССС. Короткие и средние целлюлозные волокна длиной до 500 мкм достаточно легко перемешиваются в смесителях любого типа. Длинные волокна (более 500 мкм) рекомендуется смешивать в смесителях с высокими скоростями смешения и деагломераторами, при этом достигается равномерное распределение волокон в ССС.
Производителями ССС часто практикуется предварительное смешивание некоторых компонентов сухих смесей. В первую очередь это касается так называемых премиксов песка с армирующими волокнами. Применяя, таким образом, двухстадийное смешение можно добиться достаточно равномерного перемешивания даже самых длинных волокон.
Для снижения вязкости и улучшения технологичности строительных растворов, армированных волокнами, можно использовать высокоэффективные гиперпластификаторы Melflux®, которые отличаются также противоусадочными свойствами по отношению к цементу. Применение этих продуктов особенно актуально при создании рецептур самовыравнивающихся наливных полов.
Ввиду чрезвычайно широкого ассортимента предлагаемых волокон, остаётся открытым вопрос о поиске наиболее эффективных решений. Основные характеристики волокон различных типов приведены в таблице №1.
При выборе армирующего компонента следует обратить внимание на следующие моменты:
* полиакриловые волокна повышают жесткость и эластичность композиций почти так же, как и стекловолокно, в то время как полиэфирные и целлюлозные волокна повышают жесткость и эластичность в меньшей степени. В отношении стойкости композиций к непрерывным деформациям при повышенных температурах (40°C) полиакриловые волокна Ricem® также превосходят стекловолокно, полиэстер и целлюлозу. Однако процесс шлифовки шпатлёвки могут облегчить только целлюлозные волокна;
* полипропиленовые волокна отличаются сравнительно низкой плотностью, что приводит к некоторому расслоению в процессе приготовления раствора [5], а также обладают недостаточной морозостойкостью (около -15°С) [3];
* целлюлозные и полиамидные волокна обладают ярко выраженными гидрофильными свойствами. Полиакриловые также обладают некоторой гигроскопичностью, но прельщают своей свето- и атмосфероустойчивостью, высоким модулем, хорошо влияют на усталостную прочность, имеют высокое сродство как к гидрофобным, так и к гидрофильным вяжущим.
Таким образом, при создании материалов, где требуется волокно с малым размером, лучше использовать целлюлозные волокна Technocel®, так как высокопрочное волокно не сумеет полностью проявить свои механические характеристики. При получении высокопрочных материалов, таких, например, как промышленные полы, лучше использовать высокомодульные полиакриловые волокна Ricem®. Эти волокна прекрасно зарекомендовали себя не только при производстве ССС, но и при производстве битумных дорожных покрытий, при строительстве трасс "Формулы-1" и т.д.
СПИСОК ЛИТЕРАТУРЫ:
1. "Принципы создания полимерных композиционных материалов". Ал.Ал. Берлин, С.А. Вольфсон, В.Г. Ошмян, Москва, "Химия", 1990г.
2. Сборник аналитических и проблемных задач по курсу "Принципы создания полимерных композиционных материалов". Л.Б. Кандырин, И.Д. Симонов-Емельянов, Москва, 1999г.
3. "Основы технологии переработки пластмасс" под редакцией В.Н.Кулезнёва, В.К.Гусева, Москва, "Химия", 1995г.
4. "От гарцовки - к модифицированным сухим смесям". П.И. Мешков, В.А. Мокин. "Строительные материа-лы", №3, 1999г.
5. "Армированные волокнами вяжущие композиционные материалы: вклад полиамидных волокон". Доктор М. Сари, Дж. Лекселент. 3-я Международная научно-техническая конференция "Современные техноло-гии сухих смесей в строительстве". Сборник докладов. Санкт-Петербург, 2001г.